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A B S T R A C T   

Purpose: Florbetapir PET images provide valuable information about the amount of amyloid deposition in the 
brain due to neurodegenerative diseases, which helps in the prognosis of patients. The purpose of this study is to 
develop a system that helps in the automatic amyloid quantification of the standard uptake value ratio so that 
drug treatments could be effectively determined. 
Methods: 2647 Florbetapir PET images obtained from multiple centres of Alzheimer Disease Neuroimaging 
Initiative (ADNI) and an external dataset of 1413 scans from the Anti-Amyloid Treatment in Asymptomatic 
Alzheimer’s study are used to design and test the proposed 3D CNN attention-based model to quantify the 
amyloid deposits. Only 80% of scans from the ADNI dataset are used to train the model. The remaining 20% of 
scans from ADNI and the external dataset are used for testing the trained model. 
Results: The proposed model achieves a root mean square error of 0.0362 and a mean absolute error of 0.026 on 
separate hold-out test data from ADNI and a root mean square error of 0.058 and a mean absolute error of 0.044 
Anti-Amyloid Treatment in Asymptomatic Alzheimer’s study dataset. A graphical user interface is developed for 
the proposed model which will display a slice of the Florbetapir PET volume and its predicted standard uptake 
value ratio. 
Conclusion: 3D CNN architecture with both spatial and channel attention provided better results when compared 
to models without attention. The proposed model proves to be an efficient tool in the automatic amyloid standard 
uptake value ratio quantification.   

1. Introduction 

Many elderly people are affected by progressive dementia due to 
Alzheimer’s disease worldwide. Alzheimer’s disease causes neuro-
degeneration in the brain which affects the day-to-day activities of the 
person. When this chronic disease progresses, it will lead to dementia 
and loss of bodily functions. There is uncertainty in the etiology of 
Alzheimer’s disease, but the main biomarkers that are identified in 
Alzheimer’s disease-affected persons are neurofibrillary tau tangles and 
beta-amyloid plaque deposition [1]. These biomarkers could be ob-
tained in the cerebrospinal fluid and also by molecular imaging by PET. 
Research is going on to find a possible cure for this disease. Treatments 
are devised to reduce amyloid deposits between neurons in the brain 
[2]. Before the treatment, quantification of the amyloid deposition will 

help in a better prognosis of the disease. 
Recent advancements in medical imaging have enabled the devel-

opment of novel methods for medical image fusion, synthesis, and 
enhancement [3,4]. These methods utilize various techniques to 
improve the accuracy, and quality of medical imaging [5,6]. Enhancing 
the image, and reducing noise have the potential to significantly 
improve medical diagnosis and treatment [7,8]. Artificial intelligence 
comprising machine learning and deep learning is used in many fields 
like computer vision [9–11], image forgery detection [12], defect 
detection [13], style transfer [14], steganography [15], robotics [16,17] 
etc. Artificial intelligence also plays an active role in the medical field. In 
healthcare, machine learning techniques are used for classification, 
segmentation, and regression analysis based on handcrafted features 
[18]. Some studies have used grasshopper optimization technique [19], 
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swarm optimization techniques [20,21] and equilibrium optimization 
techniques [22,23] for medical image fusion. Deep learning techniques 
use neural networks to identify the disease-affected regions, for seg-
mentation tasks, and detection of disease from behavioral and living 
environment data [24–27]. Significant works were done to classify 
Alzheimer’s disease stages as cognitively normal, mild cognitive 
impairment, and dementia due to Alzheimer’s disease using machine 
learning or deep learning [28–31] and to predict mini-mental state ex-
amination scores. Machine learning and deep learning algorithms are 
used with the PET images of Alzheimer’s disease to reduce scan acqui-
sition time [32], for image enhancement [33], and for the classification 
of amyloid positive and negative scans [34,35]. Some studies [36,37] 
used PET images to classify Alzheimer’s disease progress from mild 
cognitive impairment. 

Previously done research in the field found atrophy in the brain 
caused by Alzheimer’s disease but the abnormal amyloid and tau pro-
teins deposition occurs even before the atrophy occurs. Atrophy is best 
identified in the brain by using MRI images and metabolic changes in the 
brain are understood with the help of functional imaging. Fluorodeox-
yglucose (FDG) PET images are used to recognize the glucose meta-
bolism changes in the brain which helps in differentiating Alzheimer’s 
disease from other diseases causing dementia. Medical imaging tech-
niques like amyloid PET and tau PET are used to know the amount of 
amyloid and tau deposition respectively [38]. PET radiotracers like 
Florbetapir, Florbetaben, and Flutemetamol are used to know about the 
amyloid deposition level in the brain. These radiotracers attach them-
selves to the beta-amyloid plaques which could be identified in the PET 
imaging. When the standard uptake value ratio (SUVR) of amyloid 
deposition is above 0.78, the Florbetapir PET scan is positive or other-
wise negative. 

Amyloid PET scans improved the diagnosis of Alzheimer’s disease by 
allowing early detection of the amyloid plaques that accumulate in the 
brain. Quantification of radiotracer uptake permits a more granular 
evaluation and potentially pinpoints key regions of the brain for clas-
sification. However, there are still some challenges and problems that 
need to be addressed in the classification of Alzheimer’s disease using 
amyloid PET scans. There is a lack of standardization in the interpre-
tation of amyloid PET scans. Different imaging centres may use different 
imaging protocols and analysis techniques, which can affect the accu-
racy and reliability of the results. This can lead to variability in the 
diagnosis and treatment of Alzheimer’s disease. The visual assessment 
used for Amyloid PET positivity classification also depends on the 
experience of the reader. Prognosis can be confirmed when there is a 
system that aids in the diagnosis of amyloid positive and negative im-
ages and SUVR quantification automatically. 

Recently machine learning and deep learning techniques are used for 
amyloid analysis based on different radiotracers like Florbetapir, Flor-
betaben, and Flutemetamol. The amyloid status study of 18F-Florbeta-
ben images is done by a deep learning network for cardiac amyloidosis 
classification [39]. Machine learning techniques Gradient Boosting 
Machine and Random Forest are used to predict the Aβ positivity in Aβ 
PET images using cerebral microbleeds features [40]. Another study 
utilizes deep learning techniques to find the amyloid PET positivity 
classification using FDG PET images [41]. In previous work, the 3D CNN 
model is trained on a local dataset and tested on ADNI 18F-Florbetaben 
images to determine the amyloid positive or negative class [42]. Some 

studies used Res-Net to classify the amyloid status in florbetapir images 
from the ADNI dataset [35,43]. In [44], the authors used RegNet X064 
with a gradient boosting decision tree for predicting SUVR. 

Even though various techniques are introduced by researchers to 
perform amyloid analysis, still there is a need to improve the classifi-
cation process. The purpose of this work is to design a deep learning 
model with better performance than the current systems available to 
detect the amyloid burden in the brain using Florbetapir scans. In 
addition to the amyloid positivity classification, it would be informative 
to know the amount of SUVR quantification while developing a deep 
learning model. Florbetapir PET images are frequently used in the mo-
lecular imaging of neurodegeneration patients. These scans are used to 
detect beta-amyloid plaque deposits in the human brain. There is a 
strong need for a system that helps in the automatic standard uptake 
value ratio (SUVR) quantification of Florbetapir PET images which is 
otherwise a lengthy process where manual errors could occur at many 
stages. Hence, a deep learning system with attention is proposed that 
could help in the quantification process which will act as an aid to ra-
diologists and neurologists. It is inspired by the attention mechanism 
used in medical image analysis [45–47] for classification or segmenta-
tion due to its capability to identify disease-affected regions. The 
channel attention and the spatial attention used in the proposed model 
utilize the inter-spatial relationship of features and channel information 
to have better feature descriptors for SUVR quantification. The model is 
developed based on a large dataset of Florbetapir PET scans from Alz-
heimer Disease Neuroimaging Initiative (ADNI) and also tested on 
another dataset of Florbetapir PET scans from Anti-Amyloid Treatment 
in Asymptomatic Alzheimer’s (A4) study. A Graphical User Interface 
(GUI) is designed for amyloid analysis of Florbetapir PET scans based on 
the proposed attention-based model. This work will act as a major step 
toward the applicability of artificial intelligence in amyloid PET SUVR 
quantification. 

2. Methods 

2.1. Study participants 

Amyloid PET data taken from Alzheimer Disease Neuroimaging 
Initiative (ADNI) (https://adni.loni.usc.edu) database and Anti-Amyloid 

Table 1 
Details of the study participants.  

Category 
ADNI 
(n ¼ 2647) 

CN (n ¼ 1052) MCI (n ¼ 1195) AD (n ¼ 400) 

Amyloid positive Amyloid Negative Amyloid positive Amyloid Negative Amyloid positive Amyloid Negative 

Number of images 322 730 603 592 345 55 
Gender (F/M) 196/126 369/361 269/334 243/349 160/185 14/41 
Age 77.10 ± 6.53 74.91 ± 7.18 75.44 ± 7.58 73.26 ± 8.27 76.21 ± 7.80 77.35 ± 7.21  

Fig. 1. Percentage of participants in amyloid positive and negative category.  
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Treatment in Asymptomatic Alzheimer’s (A4) study [48] are used in the 
preparation of this article. A total of 2647 florbetapir PET scans are 
taken from ADNI1, ADNI2, ADNIGO, and ADNI3 participants. The data 
include longitudinal 18F[AV-45] scan images of cognitive normal (CN), 
Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD) par-
ticipants. The gender and age criteria of the participants involved in the 
ADNI clinical trial are shown in Table1 and the percentage of partici-
pants in amyloid positive and amyloid negative classification are shown 
in Fig. 1.. 

A total of 1413 Florbetapir scans are taken from three research 
groups – elevated amyloid level group, not elevated amyloid level group 
belonging to Longitudinal Evaluation of Amyloid Risk and Neuro-
degeneration (LEARN) observation, and not elevated amyloid level 
group not belonging to LEARN observation from A4 study to further test 
the model. Out of these 489 scans belong to amyloid positive scans and 
924 scans belong to amyloid negative scans. The amyloid positive scans 
belong to 300 female subjects and 189 male subjects involved in the A4 
study. The amyloid negative scans belong to 545 female subjects and 
379 male subjects from the A4 study. The mean age of amyloid positive 
participants’ category is 72.23 with a standard deviation of 5.16 and the 
mean age of amyloid negative participants’ category is 71.22 with a 
standard deviation of 4.59. 

2.2. PET scans 

The scans are downloaded from the ADNI database (adni.loni.usc.ed 
u/methods/pet-analysis/pre-processing) in NIFTI format. They have a 
uniform size of 160x160x96. Initially, the AC-PC line is adjusted for each 
scan and then the 18F-florbetapir template [49] is used for the normal-
ization of the PET scan. These steps are performed using Statistical 
Parametric Mapping SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) added 
to the MATLAB R2020b. The normalized volumes are of size 
101x116x96 with a voxel size of 2x2x2mm3. 

Florbetapir PET scans from the A4 study were acquired 50–70 min’ 
post-injection and reconstructed in 4x5-minute frames as NIFTI files. 
These amyloid PET scans from the A4 study have different volume sizes. 
AC-PC line is adjusted for each Florbetapir PET scan and the scan is 

normalized to the PET template [49] to have processed volumes of size 
101x116x96 with a voxel size of 2x2x2 mm3. An example of amyloid 
positive scan and amyloid negative scan in sagittal, coronal, and axial 
view considered in this study is shown in Fig. 2. 

Standardized Uptake Value Ratios (SUVRs) are obtained for all the 
scans from UC Berkeley 18F-florbetapir analysis data of the ADNI dataset 
(ida.loni.usc.edu). SUMMARYSUVR_COMPOSITE_REFNORM SUVR is 
used for the proposed analysis because longitudinal Florbetapir PET 
scans are considered (ida.loni.usc.edu). For the A4 study, SUVRs based 
on whole cerebellum cut-off 1.11 is obtained. The linear regression 
equation given by eq.1 is used for converting SUVR based on the whole 
cerebellum to SUVR based on the composite reference region by Flor-
betapir (AV45) processing methods (http://adni.loni.usc.edu). 

y = 0.630x+ 0.080 (1)  

where x represents the SUVR based on the whole cerebellum and y 
represents the SUVR based on the composite region. 

In order to obtain SUVR from the amyloid PET scan, many compu-
tations are carried out. It involves registering the PET image to the 
nearby time MRI image of the same patient, segmenting both the brain 
images correctly, and then calculating uptake values in these corre-
sponding segmented regions of the grey matter, and then normalizing 
these values according to the white matter region uptake and other small 
areas in the brain. Hence, to avoid these complex tasks, a deep learning 
system is proposed which can automate this task. 

2.3. Proposed work 

The florbetapir PET images that are normalized to the PET template 
[49] are chosen as input images. The proposed work consists of training 
a classification model first and then using it further to train a regression 
model for SUVR quantification. The proposed work is given in two steps.  

1. Initially, 3D CNN with an attention module is designed to provide 
better accuracy in classifying amyloid-positive images from amyloid- 
negative images. 3D CNN is used because it will be able to acquire 

Fig. 2. Sample scans considered in this study a) Amyloid Positive Scan b) Amyloid Negative Scan.  
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better spatial information when compared to 2D CNN. The con-
volutional block attention module helps in gaining both channel- 
related information as well as spatial information so as to obtain a 
good feature set.  

2. After freezing the weights of the above-mentioned classification 
model, features from the attention block are used to develop a 
regression model further to predict the SUVR values. These 
information-rich features are given as input to different machine 
learning models and multi-layered perceptron to check which model 
will better quantify SUVR. When 3D CNN with attention module is 
used directly for SUVR quantification, instead of amyloid positivity 
classification, it resulted in high RMSE and MAE values for SUVR. 
Hence, these two steps are used while modeling the system to predict 
SUVR. 

The workflow is depicted in Fig. 3. 

2.4. 3D CNN module 

The architecture of the proposed convolutional block attention- 
based 3D convolutional neural network is shown in Fig. 4. 

The 18F-Florbetapir PET scans each of size 101x116x96x1 from the 
training set of ADNI are used as input to the 3D CNN. The 3D CNN 
module consists of convolution blocks made up of 3D convolution ker-
nels and MaxPooling blocks. The 3D CNN module along with the filters 
specification is expressed in Fig. 5. 

The batch Normalization layer and ReLU activation layer follow after 
every convolutional layer. The number of filters for the convolution 
blocks are 32, 8, 16, 16, 32, and 64 respectively. The size of the kernels 
in the first convolution layer is 5x5x5. The size of the kernels for the 
second, third, and fifth convolution layers are 3x3x3 and for the fourth 
and sixth layers are 1x1x1. The stride value is 1 for all the convolution 
layers except the third and fifth convolutional layer which has the stride 

Fig. 3. Workflow in training the 3D CNN-based regression model.  

Fig. 4. Illustration of the proposed 3D CNN model with a convolutional block attention module.  

Fig. 5. 3D CNN module with filters specification.  
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value of 2. MaxPooling uses a kernel size of 2x2x2 with stride 2 in all 
directions. The initializer used in the convolution layer is the He-Normal 
initializer [50]. The output features from this 3D CNN backbone are 
given as input to the convolutional attention block module. 

2.4.1. Convolutional block attention module 
When humans are viewing any object, they will give attention to 

certain regions of the object to understand the object. The convolutional 
block attention module follows this concept by capturing the essential 
information of the images [51]. This concept was designed for 2D CNN- 
based models. This is adapted to work with 3D CNN in the proposed 

Fig. 6. 3D Attention module with detailed operation.  
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work. The convolutional block attention module consists of channel 
attention followed by spatial attention. 

For computing channel attention spatial dimension is squeezed, 
global max-pooling (GMP) and global average pooling (GAP) are per-
formed and passed onto the shared multi-layered perceptron (MLP). The 
sigmoid activation function (σ) is used at its output. The channel 
attention is computed using the formula in eq.2. 

Channel Attention = σ(MLP(GMP) ⊕ MLP(GAP)) (2) 

For computing spatial attention, channel max-pooling (CMP) and 
channel average pooling (CAP) are concatenated and given as input to 
the convolution layer with a single 3x3x3 kernel, stride 1, and same 
padding which is passed on to the sigmoid activation (σ) layer. The 
spatial attention is computed using the formula in eq. (3). 

Spatial Attention(SA) = σ(conv[CMP;CAP])) (3) 

The output of the attention block is obtained by the elementwise 
addition of the input to the attention block and the output of the spatial 
attention map. The proposed attention module based on 3D input is 
shown in Fig. 6. 

The output from the convolutional block attention module is flat-
tened and given as input to a dense layer with RELU activation followed 
by a dense layer with softmax activation function for amyloid positive 
and negative classification. 

2.4.2. MLP regressor 
MLP regressor consists of two dense layers with eight and single 

neurons respectively. To prevent overfitting of the model, dropout of 0.2 
is used. Adam optimizer is used in the training of the model with an 
initial learning rate of 0.001. The output from the convolutional block 
attention module is given as input to the MLP regressor. 

2.4.3. Other regressors 
Apart from MLP, other regressors like support vector regressor 

(SVR), extreme gradient boost (XGBoost) regressor), and light gradient 
boosted machine (LGBM) regressor are modelled with the features from 
the attention block as input. 

Support vector regression is obtained with the help of the non-linear 
Gaussian kernel function. The gaussian kernel function is given by Eq. 
(4). 

f
(
xi, xj

)
= exp

(
γ‖xi − xj‖

2)
, γ > 0 (4)  

where the dot product of xi, xj is calculated by using the Euclidean dis-
tance in the original space and gamma (γ) is a controlling parameter to 
avoid the model to overfit or underfit. XGBoost Regressor and LGBM 
Regressor, gradient boosting algorithms based on decision trees are also 
tested upon the features obtained from the attention block. 

2.5. Performance metrics 

RMSE and mean absolute value errors (MAE) are evaluated upon the 
predicted SUVR and the original SUVR obtained from the quantification 
based on MRI images. RMSE and MAE metrics explain the amount of 
deviation from the original SUVR. RMSE and MAE are calculated using 
Eq. (5) and Eq. (6). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

yi − ypred
)2

n

√

(5)  

MAE =

⃒
⃒yi − ypred

⃒
⃒

n
(6)  

where yi represents the actual values and ypred represents the predicted 
values and n is the number of observations. 

3. Results and discussion 

A total of 2116 longitudinal Florbetapir PET images which consists of 
80% of total scans from ADNI are used for training and validating the 
model. A hold-out test set of 531 Florbetapir images (the remaining 20% 
of ADNI scans) are used to evaluate the trained model. Patient-wise 
splitting of longitudinal PET data is performed so that no data leakage 
occurs during the training, validation, and testing phases. It is difficult to 
store the entire PET image data in RAM. Hence, TensorFlow records are 
used for batch processing of the PET volumes. Data augmentation is 
performed over the training set by flipping the hemispheres of the brain. 
The categorical loss function is used for training the initial model for 
amyloid positive and amyloid negative classification. Early stopping is 
used during training to monitor the validation loss with the patience of 
15 epochs. The learning rate starts from 0.001 and is reduced by a factor 
of 0.1 till it reaches 1E-5 when the validation loss does not decrease for 
10 epochs. The proposed model is implemented with TensorFlow and 
Keras framework using Google Colaboratory (GPU: 1xTesla K80). 

Different validation runs are carried out by choosing the filters for 
the convolution layers as [8,8,16,16,32,32], [32,8,8,16,16,32], 
[32,8,16,16,32,64], [32,8,16,32,32,64] which is depicted in Fig. 7. 

The model when validated using only the 3D CNN backbone resulted 
in an accuracy of 0.9595. For spatial attention alone, kernel sizes of 5 
and 7 are used for different validation runs resulting in an accuracy of 
0.9619 and 0.9643 respectively. For channel attention alone, channel 
ratio of 8 and 16 resulted in an accuracy of 0.9630 and 0.9574 respec-
tively. 3D CNN having channel attention with a channel ratio of 8, and 
spatial attention with a kernel size of 7 resulted in an accuracy of 0.9738 
respectively which is depicted in Fig. 8. 

Based on these results, the model with [32,8,16,16,32,64] filters for 
the convolution layers consisting of spatial and channel attention with a 
kernel size of 7 is chosen to be the best model for classification. 5-fold 
cross-validation is performed based on this model with accuracy as the 
performance metric. An accuracy of 0.9709 ± 0.002 is achieved upon 5- 
fold cross-validation. In order to ensure no data leakage occurs, the split 
is made in such a way that the scans of a particular person belong 
completely in each fold and are not split across folds. The training time 
took nearly three hours and is performed for 38 epochs. Testing was 
completed within a few seconds upon running a model on the Colab 
environment with GPU. The hold-out test dataset is used only after the 
finalization of the model selection and completion of hyperparameter 
tuning. The proposed 3D CNN model with attention block for amyloid 
positivity classification results in an accuracy of 0.9699, a sensitivity of 
0.9720, and a specificity of 0.9680 on the test dataset from ADNI. 
Florbetapir PET scans of Alzheimer’s disease are classified with better 
accuracy than the scans of the subjects belonging to mild cognitive 
impairment or normal controls. 

Fig. 7. Validation performance of the model with various filters of convolu-
tion layers. 
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ROC curve is constructed based on true positive rate and false- 
positive rate for both the classes (amyloid positive and negative). It 
tells how good the model is at classifying each class. The ROC curve and 
AUC are shown in Fig. 9. 

The chosen classification model resulted in a confusion matrix for the 
test data from ADNI as shown in Table 2. As can be perceived from 
Table 2, nine amyloid negative scans are misinterpreted as positive scans 
and seven amyloid positive scans are misinterpreted as negative scans, 
and all the remaining scans are correctly classified. 

Gradient-weighted class activation mapping (Grad-CAM) was intro-
duced to create visual elucidations for the decisions taken by the 2D 
convolutional neural network [52]. Grad-CAM highlights the important 
regions in the image used for identifying the image as belonging to a 
particular class. Based on this method, Grad-CAM is adapted for the 3D 

convolutional neural network using the gradients of the last layer before 
flattening layer of the proposed model. Grad-CAM result is displayed for 
a random slice of each axis in Fig. 10 for a particular PET scan which is 
amyloid positive. 

As shown in Fig. 10, Grad-CAM method is implemented for 3D CNN 
with attention block to illuminate the model-interested regions of am-
yloid positive scan. It shows the regions used by the 3D CNN with 
attention block to determine the scan to be positive. The Grad-CAM of 
the proposed model also indicates that the model is performing its 
intended work instead of looking at random locations to determine the 
amyloid positivity. 

Hence, the chosen classification model weights are frozen. Next, the 
features from the attention block are extracted and given as input to 
another MLP having two dense layers with 8 and single neurons 

Fig. 8. Validation performance of the CNN model with and without attention.  

Fig. 9. ROC curve for the ADNI test data.  
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respectively. By freezing the model layers as input, the regressor layers 
are designed. root mean squared error (RMSE) loss is used to train the 
model and RMSE is used as the metric to be displayed after every epoch 
while model training takes place. When the validation loss remains the 
same and does not decrease, the learning rate is reduced by a factor of 
0.1 till it reaches 1E-5. The model is saved at the end of every epoch. An 
early stopping mechanism is used to stop the training of the model if the 
validation loss does not decrease for 25 epochs. The proposed model is 
developed using TensorFlow and Keras using Google Colaboratory with 
a GPU runtime (1xTesla K80). Increasing the number of neurons or 
layers did not improve the performance of the model. Increasing or 
decreasing the dropout rate also did not increase the performance of the 
model. 

Other regressor models are developed with the help of scikit-learn, 
XGBoost, and LGBM libraries. The models are validated with different 
parameter values for C and gamma for SVR. Similarly, for XGBoost 
different values are given for n_estimators, max_depth, learning rate, 
subsample, and colsample_bytree and tested. For the LGBM regressor, 
the objective is set to be RMSE, and different values are given to learning 
rate, reg_lambda, n_estimators, colsample_bytree, max_depth, num_-
leaves, subsample, and subsample_freq and all the models are evaluated. 
Table 3. shows the best regressor models developed from the SVR, 
XGBoost, LGBM regressors, and MLP regressor with dropout which are 
evaluated against the validation data. For SVR, 0.1 is used for the 
parameter C value. For XGB Regressor, n_estimators are chosen to be 
1000, with max_depth as 7, subsample as 0.7, and colsample_bytree as 

0.8. Similarly, for LGBM regressor, learning rate is chosen as 0.08, 
reg_lambda value is chosen as 0.1, n_estimators as 600, colsample_bytree 
as 0.8, max_depth as 5, num_leaves as 10, subsample as 0.8, and sub-
sample_freq as 15. 

Based on the results seen in Table 3, the 3D CNN attention-based 

Table 2 
Confusion matrix for test data from ADNI.  

Disease category Confusion matrix 

AD (n = 84) 
Amyloid positive: n = 72 
Amyloid negative: n = 12 

TP = 71 FP = 1  

FN = 1 TN = 11 
MCI (n = 267) 

Amyloid positive: n = 122 
Amyloid negative: n = 145 

TP = 119 FP = 3  

FN = 3 TN = 142 
CN (n = 180) 

Amyloid positive: n = 56 
Amyloid negative: n = 124 

TP = 53 FP = 5  

FN = 3 TN = 119  

Fig. 10. Axial, sagittal and coronal slices of Florbetapir image is displayed in grayscale in top row and Grad-CAM overlayed on axial, sagittal and coronal slices of the 
same Florbetapir image in bottom row. 

Table 3 
Validation Performance of SUVR regression by the different models by freezing 
the weights of the classification model.  

Model RMSE MAE 

SVR  0.0681  0.0586 
XGBoost Regressor  0.0411  0.0318 
LGBM Regressor  0.0386  0.0296 
Proposed MLP  0.0315  0.0260  

Table 4 
Performance of different models on ADNI test data.  

Model Total number 
of parameters 
present in the 
model 

FLOPs Memory RMSE on 
ADNI 
Test 
data 

MAE on 
ADNI 
Test 
data 

ResNet50 23,620,481 2.13G 90.38 
MB 

0.0794  0.0595 

ResNet101 42,690,945 4.26G 163.3 
MB 

0.0722  0.0559 

ResNet152 58,403,713 6.32G 223.5 
MB 

0.0666  0.0504 

VGG19 20,028,993 8.75G 76.4 MB 0.1488  0.1293 
Reith F et al. 

(2020)  
[35] 

– – – 0.059 ±
0.005  

– 

Reith F et al. 
(2021)  
[43] 

– – – 0.0339 
± 0.0003  

– 

Maddury S 
et al. 
(2023)  
[44] 

– – – –  0.0441 

Proposed 
CNN model 
with 
attention 
blocks 

109,935 23.9G 479 KB 0.0362  0.0260  

R. Divya and R. Shantha Selva Kumari                                                                                                                                                                                                    



Biomedical Signal Processing and Control 86 (2023) 105254

9

model with MLP is selected as the final model and tested upon the 
separate hold-out test data. Testing is completed within a few seconds in 
GPU runtime of the Google Colab environment. The model is evaluated 
on the test set only after the final selection of the model with the desired 
parameters. The proposed 3D CNN attention-based model achieved 
RMSE of 0.0362 and MAE of 0.026 on the ADNI test data. 

The proposed 3D CNN attention-based model with MLP for SUVR 
regression is compared with the ResNet and VGG-19 models designed 
using transfer learning by fine-tuning ResNet and VGG-19 weights that 
were pre-trained by using the ImageNet dataset of natural images in 
Table 4. From Table 4, it is observed that both RMSE and MAE are the 
lowest for the proposed 3D CNN attention-based model when compared 
with the other models. Among the 96 slices of the scans, the slices 
numbered 40, 50, and 60 are used as input to the ResNet and VGG19 
models whereas the entire volume of the scan 101x116x96 is given as 
input to the proposed model. Hence 3D convolutions are not used for 
ResNet and VGG19 models because the scan slices are not adjacent. The 
proposed model also has less number of parameters when compared to 
other models and therefore it occupies less storage space but provides 
better results. This is because, for the calculation of SUVR in PET scans, 
different brain regions (frontal region, lateral temporal region, parietal 
region and cingulate region) are considered which may not be the case 
when only 3 slices in the brain region are taken. Though, the proposed 
model performs better than the compared models it has more floating- 
point operations (FLOPs) when compared with the other models 
because it is based on 3D volumes instead of 2D images. Henceforth, 
work will also be done in the future to reduce the number of FLOPs and 
also to further improve the performance of the model. 

The proposed 3D CNN attention-based model is checked for its per-
formance by comparing it with other recent studies. In [41], deep 
learning-based amyloid positivity classification is performed using FDG 
PET images. This resulted in an accuracy of 0.770, sensitivity of 0.800, 
and specificity of 0.740 in the internally validated dataset. In [53], the 
training was performed on a local dataset using a 3D CNN model and 
tested on ADNI 18F-Florbetaben images. This resulted in an accuracy of 
0.92 when tested over the ADNI dataset. 

In [35], ResNet architectures were used with 3 slices to perform 
classification with a mean accuracy of 0.9388, mean sensitivity of 

0.9152, and mean specificity of 0.9623. SUMMARYSUVR_-
WHOLECEREBNORM SUVR from the ADNI website was evaluated based 
on the model [35] and found to have a mean RMSE score of 0.059 upon 
cross-validation. In [43], ResNet combined with gradient boosting tree 
was used with 3 input slices and 8 clinical features which resulted in a 
mean RMSE score of 0.0339 upon cross-validation. In [44], the authors 
used RegNet X064 and gradient boosting tree with 3 slices as input to 
achieve MAE of 0.0441. The proposed 3D CNN with an attention block 
model (classification model) with a five-fold cross validation accuracy of 
0.9709 ± 0.002 resulting in an accuracy of 0.9699, a sensitivity of 
0.9720, and a specificity of 0.9680 on the hold-out ADNI test data is used 
for the initial layers of the regressor model for SUVR quantification. The 
proposed model 3D CNN with attention outperformed the existing 
models as well as all the slices are considered instead of some specific 
slices to determine amyloid positivity. Hence the proposed model has 
better features derived from the amyloid positivity classification model. 
In addition to this, a separate hold-out test set is considered apart from 
the cross-validation test data. Consequently, this helped to achieve 
better performance in the regression model for SUVR quantification 
when compared with the recent studies. SUMMAR-
YSUVR_COMPOSITE_REFNORM SUVR from the ADNI website is detec-
ted with RMSE of 0.0362 and MAE of 0.026 on the ADNI test data. Since 
longitudinal data is considered, SUMMARYSUVR_COMPOSITE_R-
EFNORM SUVR is used as mentioned on the LONI IDA website re-
pository. R2 score of 0.94 on the ADNI test data set indicates a high 
correlation between the original SUVR and predicted SUVR. When this 
attention-based model is tested on A4 study dataset, it resulted in RMSE 
of 0.058 and an MAE of 0.044. R2 score of 0.8 is achieved on the A4 
study dataset. Henceforth, work will be done in the future to improve the 
performance on both ADNI and A4 study datasets and also to reduce the 
number of FLOPs to further improve the performance of the model for 
SUVR quantification. 

The scatter plot of the original SUVR values and the predicted SUVR 
values and their corresponding distributions are displayed in Fig. 11. 
From this plot, the predicted SUVR is seen highly correlating with the 
actual SUVR derived based on the MRI scans for ADNI dataset when 
compared to A4 study dataset. 

The longitudinal Florbetapir PET images from the ADNI dataset 

Fig. 11. Scatter Plot of SUVR and predicted SUVR with their corresponding histograms on a) ADNI test data b) A4 study test data.  
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contains participants belonging to CN, MCI, and AD disease category. 
The training, validation, and test data set contains images Florbetapir 
PET images from all the disease categories. For the various disease 
stages, the performance of the proposed 3D CNN attention-based model 
for the test data is shown in Fig. 12. The predicted SUVR is found to be 
highly correlated with the actual SUVR for all three categories. 

In this work, the amyloid SUVR quantification of Florbetapir PET 
images is carried out. The evaluation metrics proved that the proposed 
3D CNN attention-based model is a robust model. Based on this proposed 

work, a graphical user interface (GUI) is created. The GUI is designed so 
that users who want to know the value of SUVR quantification of a pa-
tient’s Florbetapir PET image can simply upload the file into the system. 
By using this GUI, the image file can be easily selected by clicking on the 
button that says ‘Choose file’. The GUI is designed for selecting only 
NIFTI image files. Another button named ‘Quantify’ is designed to pre-
dict the SUVR of amyloid PET images based on the proposed 3D CNN 
with attention module and MLP. This graphical user interface is shown 
in Fig. 13. The screen of the graphical user interface is split into two such 

Fig. 12. Scatter plots of original and predicted SUVR with their corresponding histograms for a) Normal Controls category b) MCI category c) AD category.  
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Fig. 13. Graphical User Interface a) Selecting the input Florbetapir PET NIFTI file b) Predicted output.  
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that the top window of the screen displays a single slice of the Florbe-
tapir PET input image from the chosen NIFTI file. The bottom window 
displays the SUVR prediction and tells the user whether the input image 
is amyloid positive or amyloid negative. Thus, the GUI design will be an 
easy tool to operate for any person with little computer knowledge. 

4. Conclusion 

Advancement in molecular PET imaging allows for better visualiza-
tion of beta-amyloid deposits in the brain. Florbetapir tracer has a very 
high potential for quick and early detection of amyloid deposition which 
could aid in targeted treatments. Deep learning is currently used in 
medicinal practice for chest X-ray detection. Soon there will be a period 
when deep learning will be used in all fields of medicine. The proposed 
model will act as a small step toward using deep learning in the field of 
amyloid quantification in the living human brain. The proposed CNN 
with an attention-based model shows the predicted SUVRs are in 
accordance with the amyloid estimation done based on MRI images of 
the ADNI dataset with an R2 score of 0.94 and the A4 study dataset with 
an R2 score of 0.8. The proposed model works the best on ADNI and 
there is some slight deviation in its performance when considering the 
A4 study. Similarly, when the PET scans are considered from other 
scanning centres, there might be a little deviation in SUVR quantifica-
tion which could be overcome by transfer learning on sample scans from 
those scanning centres. The proposed model will thus aid in the auto-
matic standard uptake value ratio quantification. The GUI developed 
along with the proposed model will make it easier to use by clinicians to 
aid in their assessment. In the future, work will be carried out to check 
whether this model could be applied to other amyloid PET scans with 
different radiopharmaceuticals. In addition to this, a deep learning 
model for SUVR quantification across different brain regions would be 
carried out with a lesser number of FLOPs that occupies small memory 
space to assist the radiologists. When SUVR is detected over different 
brain regions then that could lead to the beginning of an era of targeted 
medicines for amyloid pathology in neurodegenerative diseases. The 
targeted drugs will become a possible cure for the chronic Alzheimer’s 
disease-affected subjects. 
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